- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Bern, James M. (2)
-
Coros, Stelian (2)
-
Bern, James M (1)
-
Chang, Kai-Hung (1)
-
Hughes, Josie (1)
-
Kumagai, Grace (1)
-
Rus, Daniela (1)
-
Zargarbashi, Fatemeh (1)
-
Zhang, Annan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Soft robots can be incredibly robust and safe but typically fail to match the strength and precision of rigid robots. This dichotomy between soft and rigid is recently starting to break down, with emerging research interest in hybrid soft-rigid robots. In this work, we draw inspiration from Nature, which achieves the best of both worlds by coupling soft and rigid tissues—like muscle and bone—to produce biological systems capable of both robustness and strength. We present foundational, general-purpose pipelines to simulate and fabricate cable-driven soft-rigid robots with embedded skeletons. We show that robots built using these methods can fluidly mimic biological systems while achieving greater force output and external load resistance than purely soft robots. Finally, we show how our simulation and fabrication pipelines can be leveraged to create more complex robots and do model- based control.more » « less
-
Bern, James M; Kumagai, Grace; Coros, Stelian (, Proceedings of the International Conference on Intelligent Robots and Systems)Abstract — We present a class of tendon-actuated soft robots, which promise to be low-cost and accessible to non-experts. The fabrication techniques we introduce are largely based on traditional techniques for fabricating plush toys, and so we term the robots created using our approach “plush robots.” A plush robot moves by driving internal winches that pull in (or let out) tendons routed through its skin. We provide a forward simulation model for predicting a plush robot’s deformation behavior given some contractions of its internal winches. We also leverage this forward model for use in an interactive control scheme, in which the user provides a target pose for the robot, and optimal contractions of the robot’s winches are automatically computed in real-time. We fabricate two examples to demonstrate the use of our system, and also discuss the design challenges inherent to plush robots.more » « less
-
Bern, James M.; Chang, Kai-Hung; Coros, Stelian (, ACM Transactions on Graphics)
An official website of the United States government

Full Text Available